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Argonne National Laboratory

Theory Group

7 Staff

5 Postdocs

7 Special Term Appointees

Our research addresses the five key
questions that comprise the USA’s
nuclear physics agenda. We place
heavy emphasis on the prediction of
phenomena accessible at Argonne’s
ATLAS facility, at JLab, and at other
laboratories around the world; and
on anticipating and planning for
FRIB.

Our research explores problems in: theoretical and computational nuclear astrophysics;
quantum chromodynamics and hadron physics; light-hadron reaction theory; ab-initio
many-body calculations based on realistic two- and three-nucleon potentials; and
coupled-channels calculations of heavy-ion reactions. Our programs provide much of the
scientific basis for the drive to physics with rare isotopes. Additional research in the
Group focuses on: atomic and neutron physics; fundamental quantum mechanics;
quantum computing; and tests of fundamental symmetries and theories unifying all the
forces of nature, and the search for a spatial or temporal variation in Nature’s basic
parameters. The pioneering development and use of massively parallel numerical
simulations using hardware at Argonne and elsewhere is a major component of the
Group’s research.
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Hadron Physics
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Hadron Physics

Molecular Physics
Scale = nm
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Hadron Physics

Atomic Physics
Scale = Å
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Hadron Physics

Nuclear Physics
Scale = 10 fm
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Hadron Physics

Hadron Physics
Scale = 1 fm

Craig Roberts: Gluing together constituent quarks

Institute for Nuclear Structure and Astrophysics, 21 April 08. . . 55 – p. 4/67



First Contents Back Conclusion

Hadron Physics

Hadron Physics
Scale = 1 fm

Craig Roberts: Gluing together constituent quarks

Institute for Nuclear Structure and Astrophysics, 21 April 08. . . 55 – p. 4/67



First Contents Back Conclusion

Hadron Physics

Meta-Physics
Scale = Limited only

by Theorists
Imagination
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Fermions – two static properties:

proton electric charge = +1; and magnetic moment, µp
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Fermions – two static properties:

proton electric charge = +1; and magnetic moment, µp

Magnetic Moment discovered by Otto Stern and

collaborators in 1933; Awarded Nobel Prize in 1943

Dirac (1928) – pointlike fermion: µp =
e~

2M

Stern (1933) – µp = (1 + 1.79)
e~

2M
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Nucleon . . . 2 Key Hadrons
= Proton and Neutron

Fermions – two static properties:

proton electric charge = +1; and magnetic moment, µp

Magnetic Moment discovered by Otto Stern and

collaborators in 1933; Awarded Nobel Prize in 1943

Dirac (1928) – pointlike fermion: µp =
e~

2M

Stern (1933) – µp = (1 + 1.79)
e~

2M

Big Hint that Proton is not a point particle

Proton has constituents

These are Quarks and Gluons

Quark discovery via e− p-scattering at SLAC in 1968

– the elementary quanta of Quantum Chromo-dynamics
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What is QCD?

Gauge Theory:

Interactions Mediated by massless vector bosons

Similar interaction in QED

Special Feature of QCD – gluon self-interactions

Completely Change the Character of the Theory
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QED cf. QCD
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Add three-gluon interaction
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α

1 − α/3π ln
(
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12π

(33 − 2Nf) ln (Q2/Λ2)

2004 Nobel Prize in Physics: Gross, Politzer and Wilczek
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Quarks and Nuclear Physics
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Quarks and Nuclear Physics

Standard Model

of Particle Physics

Six Flavours
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Real World

Normal Matter . . .

Only Two Light

Flavours Active
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accessible
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Quarks and Nuclear Physics

Real World

Normal Matter . . .

Only Two Light

Flavours Active

or, perhaps, three

For numerous

good reasons,

much research

also focuses on

accessible

heavy-quarks

Nevertheless, I

will focus

primarily on the

light-quarks.
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Simple Picture

PION Craig Roberts: Gluing together constituent quarks
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Study Structure via
Nucleon Form Factors

Electron’s relativistic electromagnetic current:

jµ(P ′, P ) = ie ūe(P
′) Λµ(Q,P ) ue(P ) , Q = P ′ − P

= ie ūe(P
′) γµ(−1)ue(P )
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′) Λµ(Q,P ) ue(P ) , Q = P ′ − P

= ie ūe(P
′) γµ(−1)ue(P )

Nucleon’s relativistic electromagnetic current:
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Nucleon Form Factors

Electron’s relativistic electromagnetic current:

jµ(P ′, P ) = ie ūe(P
′) Λµ(Q,P ) ue(P ) , Q = P ′ − P

= ie ūe(P
′) γµ(−1)ue(P )

Nucleon’s relativistic electromagnetic current:

Jµ(P ′, P ) = ie ūp(P
′) Λµ(Q,P ) up(P ) , Q = P ′ − P

= ie ūp(P
′)

(

γµF1(Q
2) +

1
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σµν Qν F2(Q

2)

)

up(P )

GE(Q2) = F1(Q
2)−

Q2

4M2
F2(Q

2) , GM (Q2) = F1(Q
2)+F2(Q

2) .

Point-particle: F2 ≡ 0 ⇒ GE ≡ GM
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and properties of protons and neutrons, and ultimately atomic

nuclei, in terms of the quarks and gluons of QCD
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and properties of protons and neutrons, and ultimately atomic

nuclei, in terms of the quarks and gluons of QCD
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– No quark ever seen in isolation
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NSAC Long Range Plan

A central goal of nuclear physics is to understand the structure

and properties of protons and neutrons, and ultimately atomic

nuclei, in terms of the quarks and gluons of QCD

So, what’s the problem?

Confinement

– No quark ever seen in isolation

Weightlessness

– 2004 Nobel Prize in Physics:

Mass of u− & d−quarks,

each just 5 MeV;

Proton Mass is 940 MeV

⇒ No Explanation Apparent

for 98.4 % of MassCraig Roberts: Gluing together constituent quarks
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Meson Spectrum

140 MeV

770
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Modern Miracles
in Hadron Physics

proton = three constituent quarks

Mproton ≈ 1 GeV

guess Mconstituent−quark ≈ 1 GeV

3
≈ 350 MeV

pion =

constituent quark + constituent antiquark

guess Mpion ≈ 2 × Mproton

3
≈ 700 MeV

WRONG . . . . . . . . . . . . . . . . . . . . . . Mpion = 140 MeV

Another meson:

. . . . . . . . . . . Mρ = 770 MeV . . . . . . . . . . . No Surprises Here
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Modern Miracles
in Hadron Physics

proton = three constituent quarks

Mproton ≈ 1 GeV

guess Mconstituent−quark ≈ 1 GeV

3
≈ 350 MeV

pion =

constituent quark + constituent antiquark

guess Mpion ≈ 2 × Mproton

3
≈ 700 MeV

WRONG . . . . . . . . . . . . . . . . . . . . . . Mpion = 140 MeV

What is “wrong” with the pion?
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Dichotomy of Pion
– Goldstone Mode and Bound state

How does one make an almost massless particle
. . . . . . . . . . . from two massive constituent-quarks?

Not Allowed to do it by fine-tuning a potential

Must exhibit m2

π ∝ mq

Current Algebra . . . 1968
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The correct understanding of pion observables;
e.g. mass, decay constant and form factors,
requires an approach to contain a

well-defined and valid chiral limit;

and an accurate realisation of
dynamical chiral symmetry breaking.
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Dichotomy of Pion
– Goldstone Mode and Bound state

How does one make an almost massless particle
. . . . . . . . . . . from two massive constituent-quarks?

Not Allowed to do it by fine-tuning a potential

Must exhibit m2

π ∝ mq

Current Algebra . . . 1968

The correct understanding of pion observables;
e.g. mass, decay constant and form factors,
requires an approach to contain a

well-defined and valid chiral limit;

and an accurate realisation of
dynamical chiral symmetry breaking.

Highly Nontrivial
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What’s the Problem?
Relativistic QFT!

Minimal requirements

detailed understanding of connection between

Current-quark and Constituent-quark masses;

and systematic, symmetry preserving means of realising

this connection in bound-states.

Differences!

Here relativistic effects are crucial – virtual particles,

quintessence of Relativistic Quantum Field Theory –

must be included
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What’s the Problem?
Relativistic QFT!

Minimal requirements

detailed understanding of connection between

Current-quark and Constituent-quark masses;

and systematic, symmetry preserving means of realising

this connection in bound-states.

Differences!

Here relativistic effects are crucial – virtual particles,

quintessence of Relativistic Quantum Field Theory –

must be included

Interaction between quarks – the Interquark “Potential” –

unknown throughout > 98% of a hadron’s volume
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Intranucleon Interaction?
What is the

98% of the volume

The question must be
rigorously defined, and the
answer mapped out using
experiment and theory.
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Dynamical Chiral Symmetry Breaking

Very unnatural pattern of bound state masses

e.g., Lagrangian (pQCD) quark mass is small but . . .

no degeneracy between JP=+ and JP=−

Neither of these phenomena is apparent in QCD’s

Lagrangian yet they are the dominant determining

characteristics of real-world QCD.

Craig Roberts: Gluing together constituent quarks

Institute for Nuclear Structure and Astrophysics, 21 April 08. . . 55 – p. 17/67



First Contents Back Conclusion

QCD’s Challenges
Understand Emergent Phenomena

Quark and Gluon Confinement

No matter how hard one strikes the proton, one

cannot liberate an individual quark or gluon

Dynamical Chiral Symmetry Breaking

Very unnatural pattern of bound state masses

e.g., Lagrangian (pQCD) quark mass is small but . . .

no degeneracy between JP=+ and JP=−

Neither of these phenomena is apparent in QCD’s

Lagrangian yet they are the dominant determining

characteristics of real-world QCD.

QCD – Complex behaviour

arises from apparently simple rules
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Absent DCSB: mπ = mρ ⇒ repulsive and attractive
forces in nucleon-nucleon interaction both have SAME
range and there is No intermediate range attraction!
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Can one guarantee Mn > Mp?
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C. D. Roberts and A. G. Williams, “Dyson-Schwinger equations

and their application to hadronic physics,” Prog. Part. Nucl. Phys.

33, 477 (1994) [arXiv:hep-ph/9403224].
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system of coupled integral equations relating the Green

functions for the theory to each other.

Σ
=

D

γ
ΓS

These are nonperturbative equivalents in quantum field

theory to the Lagrange equations of motion.

Essential in simplifying the general proof of renormalisability

of gauge field theories.
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Qualitative and Quantitative Importance of:

· Dynamical Chiral Symmetry Breaking

– Generation of fermion mass from nothing

· Quark & Gluon Confinement

– Coloured objects not detected, not detectable?

⇒ Understanding InfraRed (long-range)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . behaviour of αs(Q
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Qualitative and Quantitative Importance of:
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Solutions are Schwinger Functions
(Euclidean Green Functions)

Not all are Schwinger functions are experimentally
observable but . . .

all are same VEVs measured in numerical
simulations of lattice-regularised QCD
opportunity for comparisons at
pre-experimental level . . . cross-fertilisation

Proving fruitful.
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Infinitely Many Coupled Equations

Σ
=

D

γ
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Coupling between equations necessitates truncation

Weak coupling expansion ⇒ Perturbation Theory
Not useful for the nonperturbative problems
in which we’re interested
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There is at least one systematic nonperturbative,
symmetry-preserving truncation scheme
H.J. Munczek Phys. Rev. D 52 (1995) 4736
Dynamical chiral symmetry breaking, Goldstone’s
theorem and the consistency of the Schwinger-Dyson
and Bethe-Salpeter Equations
A. Bender, C. D. Roberts and L. von Smekal, Phys.
Lett. B 380 (1996) 7
Goldstone Theorem and Diquark Confinement Beyond
Rainbow Ladder Approximation
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Infinitely Many Coupled Equations

There is at least one systematic nonperturbative,
symmetry-preserving truncation scheme

Has Enabled Proof of EXACT Results in QCD

And Formulation of Practical Phenomenological Tool to

Illustrate Exact Results

Make Predictions with Readily Quantifiable Errors
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Weak Coupling Expansion
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B(p2) = m

(

1 − α

π
ln

[

p2
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+ . . .
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S(p) =
Z(p2)

iγ · p + M(p2)
Σ

=
D

γ
ΓS

Gap Equation
dressed-quark propagator

S(p) =
1

iγ · pA(p2) +B(p2)

Weak Coupling Expansion
Reproduces Every Diagram in Perturbation Theory

But in Perturbation Theory

B(p2) = m

(

1 − α

π
ln

[

p2

m2

]

+ . . .

)

m→0→ 0

No DCSB
Here!
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Predictions confirmed in
numerical simulations of lattice-QCD
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equations and their

application to hadronic
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Long used as basis for

efficacious hadron physics

phenomenology
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– Bowman, Heller, Leinweber, Williams: he-lat/0209129
current-quark masses: 30 MeV, 50 MeV, 100 MeV
Curves: Quenched DSE Cal.

– Bhagwat, Pichowsky, Roberts, Tandy nu-th/0304003
Linear extrapolation of lattice data to chiral limit is inaccurate
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effect of gluon cloud
Rapid acquisition of mass is

Mass from nothing .

In QCD a quark’s effective mass
depends on its momentum. The
function describing this can be
calculated and is depicted here.
Numerical simulations of lattice
QCD (data, at two different bare
masses) have confirmed model
predictions (solid curves) that the
vast bulk of the constituent mass
of a light quark comes from a
cloud of gluons that are dragged
along by the quark as it
propagates. In this way, a quark
that appears to be absolutely
massless at high energies
(m = 0, red curve) acquires a
large constituent mass at low
energies.
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Hadrons

• Without bound states,
Comparison with experiment is
impossible

• They appear as pole contributions
to n ≥ 3-point colour-singlet
Schwinger functions
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Long-Range Potential?

Potential between static (infinitely heavy) quarks
measured in numerical simulations of lattice-QCD is
not related in any simple way to the light-quark
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Axial-vector Ward-Takahashi identity
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QFT Statement of Chiral Symmetry
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Axial-vector Ward-Takahashi identity

Pµ Γl
5µ(k;P ) = S−1(k+)

1

2
λl

f iγ5 +
1

2
λl

f iγ5 S−1(k−)

−Mζ iΓl
5(k;P ) − iΓl

5(k;P ) Mζ

Satisfies BSE Satisfies DSE
Kernels very different
but must be intimately related

• Relation must be preserved by truncation
• Failure ⇒ Explicit Violation of QCD’s Chiral Symmetry
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Pion and . . .
Pseudoscalar Mesons?

Can a bound-state of massive constituents truly be
massless . . . without fine-tuning?
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fH m2
H = − ρH
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MH := trflavour

[

M (µ)

{

TH ,
(

TH
)t
}]

= mq1+mq2

• Sum of constituents’ current-quark masses

• e.g., TK+

= 1
2

(

λ4 + iλ5
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q
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2tr
{

(

TH
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γ5γµ S(q+)ΓH(q;P )S(q−)

}

• Pseudovector projection of BS wave function at x = 0

• Pseudoscalar meson’s leptonic decay constant
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Light-quarks; i.e., mq ∼ 0

fH → f0
H & ρH

ζ →
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H

, Independent of mq

Hence m2
H =

−〈q̄q〉0ζ
(f0

H)2
mq . . . GMOR relation, a corollary
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Light-quarks; i.e., mq ∼ 0

fH → f0
H & ρH

ζ →
−〈q̄q〉0ζ

f0
H

, Independent of mq

Hence m2
H =

−〈q̄q〉0ζ
(f0

H)2
mq . . . GMOR relation, a corollary

Heavy-quark + light-quark

⇒ fH ∝ 1
√

mH

and ρH
ζ ∝ √

mH

Hence, mH ∝ mq

. . . QCD Proof of Potential Model result
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Radial Excitations
& Chiral Symmetry

Höll, Krassnigg, Roberts
nu-th/0406030

fH m2
H = − ρH

ζ MH

Valid for ALL Pseudoscalar mesons

ρH ⇒ finite, nonzero value in chiral limit, MH → 0

“radial” excitation of π-meson, not the ground state, so

m2
πn 6=0

> m2
πn=0

= 0, in chiral limit

⇒ fH = 0

ALL pseudoscalar mesons except π(140) in chiral limit

Dynamical Chiral Symmetry Breaking

– Goldstone’s Theorem –

impacts upon every pseudoscalar meson
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When we first heard about [this result] our first reaction was a
combination of “that is remarkable” and “unbelievable”.

CLEO: τ → π(1300) + ντ
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Diehl & Hiller
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When we first heard about [this result] our first reaction was a
combination of “that is remarkable” and “unbelievable”.

CLEO: τ → π(1300) + ντ

⇒ fπ1
< 8.4 MeV

Diehl & Hiller
he-ph/0105194

Lattice-QCD check:
163 × 32,
a ∼ 0.1 fm,
two-flavour, unquenched

⇒ fπ1

fπ

= 0.078 (93)
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When we first heard about [this result] our first reaction was a
combination of “that is remarkable” and “unbelievable”.

CLEO: τ → π(1300) + ντ

⇒ fπ1
< 8.4 MeV

Diehl & Hiller
he-ph/0105194

Lattice-QCD check:
163 × 32,
a ∼ 0.1 fm,
two-flavour, unquenched

⇒ fπ1

fπ

= 0.078 (93)

Full ALPHA formulation is required to see suppression, because
PCAC relation is at the heart of the conditions imposed for
improvement (determining coefficients of irrelevant operators)Craig Roberts: Gluing together constituent quarks
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When we first heard about [this result] our first reaction was a
combination of “that is remarkable” and “unbelievable”.

CLEO: τ → π(1300) + ντ

⇒ fπ1
< 8.4 MeV

Diehl & Hiller
he-ph/0105194

Lattice-QCD check:
163 × 32,
a ∼ 0.1 fm,
two-flavour, unquenched

⇒ fπ1

fπ

= 0.078 (93)

The suppression of fπ1
is a useful benchmark that can be used to

tune and validate lattice QCD techniques that try to determine the
properties of excited states mesons.Craig Roberts: Gluing together constituent quarks
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Answer for the pion

Two → Infinitely many . . .
Handle that
properly in
quantum
field theory
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momentum
-dependent
dressing
. . .
perceived
distribution of
mass depends
on the resolving scale
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JLab

Thomas Jefferson National Accelerator Facility

World’s Premier Hadron Physics Facility

Design goal (4 GeV) experiments began in 1995

Electrons accelerated by

repeated journeys along linacs

Once desired energy is

reached, Beam is directed into

Experimental Halls A, B and C

Current Peak

Electron Beam Energy

Nearly 6 GeV
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Walker et al., Phys.
Rev. D 49, 5671
(1994). (SLAC)

Jones et al., JLab Hall
A Collaboration, Phys.
Rev. Lett. 84, 1398
(2000)

Gayou, et al., Phys.
Rev. C 64, 038202
(2001)

Gayou, et al., JLab Hall
A Collaboration, Phys.
Rev. Lett. 88 092301
(2002)
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If JLab Correct, then

Completely

Unexpected Result:

In the Proton

– On Relativistic

Domain

– Distribution of

Quark-Charge

Not Equal

Distribution of

Quark-Current!
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New Challenges

Another Direction . . . Also want/need information about

three-quark systems

With this problem . . . current expertise at approximately

same point as studies of mesons in 1995.

Namely . . . Model-building and Phenomenology,

constrained by the DSE results outlined already.
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Faddeev equation

=
aΨ

P

p
q

p
d Γb

Γ−a

p
d

p
q

bΨ
P

q

Linear, Homogeneous Matrix equation

Yields wave function (Poincaré Covariant Faddeev

Amplitude) that describes quark-diquark relative motion

within the nucleon

Scalar and Axial-Vector Diquarks . . . In Nucleon’s Rest

Frame Amplitude has . . . s−, p− & d−wave correlations
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Diquark correlations

QUARK-QUARK

Same interaction that

describes mesons also

generates three coloured

quark-quark correlations:

blue–red, blue–green,

green–red

Confined . . . Does not

escape from within baryon.

Scalar is isosinglet,

Axial-vector is isotriplet

DSE and lattice-QCD

m[ud]
0+

= 0.74 − 0.82

m(uu)
1+

= m(ud)
1+

= m(dd)
1+

= 0.95 − 1.02
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Cloët, et al. :
arXiv:0710.2059, arXiv:0710.5746 & arXiv:0804.3118

• Interpreting expts. with GeV electromagnetic probes

requires Poincaré covariant treatment of baryons

Craig Roberts: Gluing together constituent quarks

Institute for Nuclear Structure and Astrophysics, 21 April 08. . . 55 – p. 49/67

http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0710.2059
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0710.5746
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0804.3118


First Contents Back Conclusion

Nucleon EM Form Factors: A Précis
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• Excellent mass spectrum (octet and decuplet)

Easily obtained:
(
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∑

H
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(Oettel, Hellstern, Alkofer, Reinhardt: nucl-th/9805054)
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Cloët, et al. :
arXiv:0710.2059, arXiv:0710.5746 & arXiv:0804.3118

• Interpreting expts. with GeV electromagnetic probes

requires Poincaré covariant treatment of baryons

⇒ Covariant dressed-quark Faddeev Equation

• Excellent mass spectrum (octet and decuplet)

Easily obtained:
(

1

NH

∑

H

[M exp
H −M calc

H ]2

[M exp
H ]2

)1/2

= 2%

• But is that good?

Craig Roberts: Gluing together constituent quarks

Institute for Nuclear Structure and Astrophysics, 21 April 08. . . 55 – p. 49/67

http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0710.2059
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0710.5746
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0804.3118


First Contents Back Conclusion

Nucleon EM Form Factors: A Précis
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• Interpreting expts. with GeV electromagnetic probes

requires Poincaré covariant treatment of baryons

⇒ Covariant dressed-quark Faddeev Equation

• Excellent mass spectrum (octet and decuplet)

Easily obtained:
(

1

NH

∑

H

[M exp
H −M calc

H ]2

[M exp
H ]2

)1/2

= 2%

• But is that good?

• Cloudy Bag: δMπ−loop
+ = −300 to −400 MeV!

• Critical to anticipate pion cloud effects

Roberts, Tandy, Thomas, et al., nu-th/02010084

Craig Roberts: Gluing together constituent quarks

Institute for Nuclear Structure and Astrophysics, 21 April 08. . . 55 – p. 49/67

http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0710.2059
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0710.5746
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0804.3118
http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=FIND+key+4856740


First Contents Back Conclusion

Harry Lee
Pions and Form Factors

Craig Roberts: Gluing together constituent quarks

Institute for Nuclear Structure and Astrophysics, 21 April 08. . . 55 – p. 50/67

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=FIND+key+3365395
http://www.slac.stanford.edu/spires/find/hep/www?key=3365395
http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=FIND+key+4477740
http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=FIND+key+4477740


First Contents Back Conclusion

Harry Lee
Pions and Form Factors

Dynamical coupled-channels model . . . Analyzed extensive JLab
data . . . Completed a study of the ∆(1236)

Meson Exchange Model for πN Scattering and γN → πN Reaction, T. Sato
and T.-S. H. Lee, Phys. Rev. C 54, 2660 (1996)

Dynamical Study of the ∆ Excitation in N(e, e′π) Reactions, T. Sato and
T.-S. H. Lee, Phys. Rev. C 63, 055201/1-13 (2001)
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Quark Core

Responsible for only 2/3 of
result at small Q2

Dominant for Q2 >2 – 3 GeV2
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Results: Nucleon
and ∆ Masses

Mass-scale parameters (in GeV)

for the scalar and axial-vector

diquark correlations, fixed by

fitting nucleon and ∆ masses

Set A – fit to the actual masses was required; whereas for

Set B – fitted mass was offset to allow for “π-cloud” contributions

set MN M∆ m0+ m1+ ω0+ ω1+

A 0.94 1.23 0.63 0.84 0.44=1/(0.45 fm) 0.59=1/(0.33 fm)

B 1.18 1.33 0.80 0.89 0.56=1/(0.35 fm) 0.63=1/(0.31 fm)

m1+ → ∞: MA
N = 1.15 GeV; MB

N = 1.46 GeV
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Mass-scale parameters (in GeV)

for the scalar and axial-vector

diquark correlations, fixed by

fitting nucleon and ∆ masses

Set A – fit to the actual masses was required; whereas for

Set B – fitted mass was offset to allow for “π-cloud” contributions

set MN M∆ m0+ m1+ ω0+ ω1+

A 0.94 1.23 0.63 0.84 0.44=1/(0.45 fm) 0.59=1/(0.33 fm)

B 1.18 1.33 0.80 0.89 0.56=1/(0.35 fm) 0.63=1/(0.31 fm)

m1+ → ∞: MA
N = 1.15 GeV; MB

N = 1.46 GeV

Axial-vector diquark provides significant attraction
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Set B – fitted mass was offset to allow for “π-cloud” contributions

set MN M∆ m0+ m1+ ω0+ ω1+

A 0.94 1.23 0.63 0.84 0.44=1/(0.45 fm) 0.59=1/(0.33 fm)

B 1.18 1.33 0.80 0.89 0.56=1/(0.35 fm) 0.63=1/(0.31 fm)

m1+ → ∞: MA
N = 1.15 GeV; MB

N = 1.46 GeV

Constructive Interference: 1++-diquark + ∂µπ
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Valid for r2
nQ2 ∼< 1

No sign yet of a zero in Gn
E(Q2), even though calculation

predicts Gp
E(Q2 ≈ 6.5 GeV2) = 0

Data to Q2 = 3.4 GeV2 is being analysed (JLab E02-013)
Craig Roberts: Gluing together constituent quarks

Institute for Nuclear Structure and Astrophysics, 21 April 08. . . 55 – p. 54/67



First Contents Back Conclusion

Epilogue

Craig Roberts: Gluing together constituent quarks

Institute for Nuclear Structure and Astrophysics, 21 April 08. . . 55 – p. 55/67



First Contents Back Conclusion

Epilogue

Craig Roberts: Gluing together constituent quarks

Institute for Nuclear Structure and Astrophysics, 21 April 08. . . 55 – p. 55/67



First Contents Back Conclusion

Epilogue

DCSB exists in QCD.

Craig Roberts: Gluing together constituent quarks

Institute for Nuclear Structure and Astrophysics, 21 April 08. . . 55 – p. 55/67



First Contents Back Conclusion

Epilogue

DCSB exists in QCD.

It is manifest in dressed propagators and

vertices

It impacts dramatically upon observables.

Craig Roberts: Gluing together constituent quarks

Institute for Nuclear Structure and Astrophysics, 21 April 08. . . 55 – p. 55/67



First Contents Back Conclusion

Epilogue

DCSB exists in QCD.

It is manifest in dressed propagators and

vertices

It impacts dramatically upon observables.

Constituent-quarks of old are the dressed-quarks of today

Craig Roberts: Gluing together constituent quarks

Institute for Nuclear Structure and Astrophysics, 21 April 08. . . 55 – p. 55/67



First Contents Back Conclusion

Epilogue

DCSB exists in QCD.

It is manifest in dressed propagators and

vertices

It impacts dramatically upon observables.

Constituent-quarks of old are the dressed-quarks of today

Confinement

Craig Roberts: Gluing together constituent quarks

Institute for Nuclear Structure and Astrophysics, 21 April 08. . . 55 – p. 55/67



First Contents Back Conclusion

Epilogue

DCSB exists in QCD.

It is manifest in dressed propagators and

vertices

It impacts dramatically upon observables.

Constituent-quarks of old are the dressed-quarks of today

Confinement

Expressed and realised in dressed propagators and

vertices associated with elementary excitations

Observables can be used to explore model realisations

Craig Roberts: Gluing together constituent quarks

Institute for Nuclear Structure and Astrophysics, 21 April 08. . . 55 – p. 55/67



First Contents Back Conclusion

Epilogue

DCSB exists in QCD.

It is manifest in dressed propagators and

vertices

It impacts dramatically upon observables.

Constituent-quarks of old are the dressed-quarks of today

Confinement

Expressed and realised in dressed propagators and

vertices associated with elementary excitations

Observables can be used to explore model realisations

DSEs . . . contemporary tool that describes and explains

these phenomena, and connects them with prediction of

observables
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• Bethe-Salpeter kernel . . . recursion relation

−
1

8C �a;n� = �M�n�1� + �M�n�1� + �a;n�1�

• Kernel necessarily non-planar,
even with planar vertex
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• π massless in chiral limit . . . NO Fine Tuning

• π-ρ mass splitting driven by DχSB mechanism
Not constituent-quark-model-like hyperfine splitting

• Extending kernel: NO effect on mπ

For mρ – zeroth order, accurate to 20%
– one loop, accurate to 13%
– two loop, accurate to 4%
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Deep-inelastic scattering

Looking for Quarks

Signature Experiment for QCD:

Discovery of Quarks at SLAC

Cross-section: Interpreted as Measurement of
Momentum-Fraction Prob. Distribution: q(x), g(x)
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Pion’s valence quark distn

π is Two-Body System: “Easiest” Bound State in QCD

However, NO π Targets!

Existing Measurement Inferred from Drell-Yan:

πN → µ+µ−X

Proposal (Holt & Reimer, ANL, nu-ex/0010004)

e−5GeV – p25 GeV Collider → Accurate “Measurement”

p n

πγ
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Handbag diagrams

Bjorken Limit: q2 → ∞ , P · q → −∞

but x := −
q2

2P · q
fixed.

Numerous algebraic simplifications
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Extant theory vs. experiment

K. Wijersooriya, P. Reimer and R. Holt,

nu-ex/0509012 ... Phys. Rev. C (Rapid)
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E615 πN Drell−Yan 4GeV
NLO Analysis of E615 ... β=1.87
DSE ... β= 2.61
NJL ... β= 1.27
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Nucleon’s Quark
Distribution Functions

DIS

ℓ
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X
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SI–DIS
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Three twist-2 parton distributions (k⊥ = 0):

Spin-Independent: q(x)

Helicity: ∆q(x)

Transversity: ∆T q(x)

All distributions have probability interpretation.

By definition, contain essentially non-perturbative

information about a given process.
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Definition and
Sum Rules

Light-cone Fourier transforms :

∆T q(x) = p+

∫

dξ−

2π
ei x p+ξ−〈p, s|ψq(0)γ

+γ1γ5ψq(ξ
−)|p, s〉c

q(x) = 〈γ+〉, ∆q(x) = 〈γ+γ5〉

Related to the nucleon axial & tensor charges via

gA =

∫

dx[∆u(x) − ∆d(x)], gT =

∫

dx[∆Tu(x) − ∆Td(x)],

Must satisfy: positivity constraints and Soffer bound

∆q(x),∆T q(x) 6 q(x), q(x) + ∆q(x) > 2 |∆T q(x)|
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Ian Cloët
JLab, now ANL

Once more on the one that got away.
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Model predictionsCloët, Bentz, Thomas

arXiv:0708.3246 [hep-ph]
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Model predictionsCloët, Bentz, Thomas

arXiv:0708.3246 [hep-ph]

Simplified Faddeev equation
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Satisfy: Soffer bound, baryon & momentum SRs.
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Model predictionsCloët, Bentz, Thomas
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Simplified Faddeev equation
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Satisfy: Soffer bound, baryon & momentum SRs.

Moments at Q2 = 0.16 GeV2:

∆u = 0.97, ∆d = −0.30 =⇒ gA = 1.267

∆Tu = 1.04, ∆T d = −0.24 =⇒ gT = 1.28

Model constraint
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Simplified Faddeev equation
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Satisfy: Soffer bound, baryon & momentum SRs.

Moments at Q2 = 0.16 GeV2:

∆u = 0.97, ∆d = −0.30 =⇒ gA = 1.267

∆Tu = 1.04, ∆T d = −0.24 =⇒ gT = 1.28

∆q(x) ∼ ∆T q(x) in valence region for Q2 . 10 GeV2
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